Java Swing, Events

Readings:
Just Java 2: Chap 19 & 21, or
Eckel's Thinking in Java: Chap 14

Slide credits to CMPUT 301, Department of
Computing Science
University of Alberta

Java Foundation Classes

JFC:

— Abstract Window Toolkit (AWT)
— original user interface toolkit
—don't go there!

— Swing

— package javax.swing.*, introduced in Java 1.2

Swing

Portable API:

— The appearance and behavior (look-and-
feel) of the user interface components are
implemented in Java ...

— might work slightly differently from any host
platform

— pluggable look-and-feels
e.g., Motif, windows, ...

Containment Hierarchy

« Top-level container:

— place for other Swing components to paint
themselves

—e.g., JFrame, JDialog, Japplet
Intermediate container:

— simplify positioning of atomic components
—e.g., JPanel, JSplitPane, JTabbedPane

Containment Hierarchy

« Atomic components:

— self-sufficient components that present
information to and get input from the user

- e.g., JButton, JLabel, JComboBox,
JTextField, JTable

Swing

+ Components
and containers:
— superclasses

and interfaces
— extends
and implements

© O'Reilly 1999

Swing

* Java
Documentation:

— http://java.sun.com/j2se/1.4.
1/docs/api/javax/swing/pack
age-summary.htm|

¢ SwingSet:

va.sun.com/products
tart/demos.html

Containers

* Notes:

— Container objects group components,

arranging t for display with a layout
manager.

Top-Level Containers

¢ JFrame example:

— contains a single component JRootPane, which
has a JMenuBar (optional) and a content pane

—t heFr ane. set JMenuBar (t heMenuBar)
— t heFr ane. set Cont ent Pane(t hePanel)

—add non-menu components to this content
pane

— t heFr anme. get Cont ent Pane() . add(aButton)

Events

« Two approaches to event handling
— read-evaluation loop (client-written loop)
— notification-based (callbacks)

Swing uses the 2nd approach

Events

Swing:

— objects communicate by “firing” and
“handling” events (event objects)

— (conventional method call)

— events are sent from a single source object
to one or more registered listener objects

Events

¢ Swing:

— different event sources produce different
kinds of events

e.g., a JButton object, when clicked,
generates an ActionEvent object, which is
handled by an ActionListener (an object
whose class implements this interface)

Events

listener interface

Events

Handling:
— create a component
—e.g., a JButton
—add it to the GUI
—e.g., to a JPanel
—register a listener to be notified when the
component generates an event
—e.g., interface ActionListener
— define the callback method
—e.g., actionPerformed()

Event Handling

class MListener inplenents ActionListener {

public void actionPerformed(ActionEvent event) {
/1 react to event

}
}

/7 instantiate event Iistener
ActionListener |istener = new MyListener();

/] instantiate event source
JButton button = new JButton(“Hello”

/i register event listener with event source
but t on. addAct i onLi stener (|istener);

UML Sequence Diagram

new

new

addActionListener

0

. actionPerformed ()

‘MyLigener

Event Handling

Options for implementing listeners:
— listener class

—anonymous inner classes

—named inner classes

Event Handling

¢ Listener class:

Event Handling

¢ Anonymous inner listener class:

Event Handling

* Named inner listener class:

BanmHenle

Event Handling
* Note:

— A class could potentially be both an event
source and event listener.

—Good or bad idea? ...

Event Handling

* public class MyButton extends JButton inpl enents
ActionListener {

public M/Button() {

addActi onLi stener(this);
}

public void actionPerformed(ActionEvent event) {

}
}

« JButton button = new MyButton() ...

Dependencies

observers

subject

Dependencies

Problems:
—need to maintain consistency in the views (or
observers)

—need to update multiple views of the common
data model (or subject)

—need clear, separate responsibilities for
presentation (look), interaction (feel),
computation, persistence

Model/View/Controller Model/View/Controller Model/View/Controller

MVC roles:
—model

* MVC roles:
— view
— complete, self-contained representation of —tracks what is needed for a particular perspective
object managed by the application gfg;hebg?:;art i
e.g., spreadsheet document _ plre;entation issues
— provides a number of services to manipulate

the data — controller

e.g., recalculate, save — gets input from the user, and uses appropriate

tati d ist . information from the view to modify the model
= EehiftiElel) e [SEEREED EEES e.g., get slider value, trigger chart modify
—interaction issues

Model/View/Controller

Model/View/Controller Model/View/Controller

Separation:

—you can modify or create views without
affecting the underlying model

¢ In Swing: n Swing:

—in practice, views and controllers are
implemented with Swing components and
listeners

— still, try to separate the model and its
services so that it is Swing-free

— the model should not need to know about

all the kinds of views and interaction styles

—model is like a “virtual machine” or “kernel”
available for it

— both views and controllers will be specific to the application

dependent on Swing APIs

— separate threads?

Model/View/Controller Model/View/Controller Pluggable Look-and-Feel
« Smalltalk:

¢ Java and Swing:
— originated the MVC concept

— concept is still valid to help structure —the look-and-feel is implemented in Java, but
interactive applications

could mimic Windows, Moatif, Classic, Aqua,
— integral support in interactive applications e.g., use a framework that supports MVC ElC
with MVC classes

¢ Swing:

. f . — Ul Manager . set LookAndFeel (
- SWIng |nternal|y uses a variant Of_MVC for “com sun. j ava. swi ng. pl af . wi ndows. W ndowsLookAndFeel "
its pluggable look-and-feel capability ...)i

— U Manager . set LookAndFeel (
“j avax. swing. pl af . netal . Met al LookAndFeel "

)3

Pluggable Look-and-Feel Pluggable Look-and-Feel Pluggable Look-and-Feel
¢ SwingSet:
— http://java.sun.com/products/javawebstart/demos.html

¢ ldea: ¢ Swing internals:

—each component uses a user interface

delegate object (responsible for view and
controller roles)

— similar to skins, themes, schemes, etc., but
must include “feel” as well as “look”

Pluggable Look-and-Feel Model/View/Controller

¢ Swing internals: ¢ CRC cards for MVC:

— each component specifies a model —discuss what models, views, and
interface that an associated model class controllers there are in the system
must implement

— be a design critic

