
1

Java Swing, Events

Readings:
Just Java 2: Chap 19 & 21, or

Eckel’s Thinking in Java: Chap 14

Slide credits to CMPUT 301, Department of
Computing Science
University of Alberta

2

Java Foundation Classes

• JFC:
– Abstract Window Toolkit (AWT)

– original user interface toolkit
– don’t go there!

– Swing
– package javax.swing.*, introduced in Java 1.2

3

Swing

• Portable API:
– The appearance and behavior (look-and-

feel) of the user interface components are
implemented in Java …

– might work slightly differently from any host
platform

– pluggable look-and-feels
e.g., Motif, windows,…

4

Containment Hierarchy

• Top-level container:
– place for other Swing components to paint

themselves
– e.g., JFrame, JDialog, Japplet

• Intermediate container:
– simplify positioning of atomic components
– e.g., JPanel, JSplitPane, JTabbedPane

5

Containment Hierarchy

• Atomic components:
– self-sufficient components that present

information to and get input from the user
– e.g., JButton, JLabel, JComboBox,

JTextField, JTable

6

Swing

• Components
and containers:
– superclasses

and interfaces
– extends

and implements

© O’Reilly 1999

2

7

Swing

• Java
Documentation:
– http://java.sun.com/j2se/1.4.

1/docs/api/javax/swing/pack
age-summary.html

• SwingSet:
– http://java.sun.com/products

/javawebstart/demos.html

• Quick tutorial:
– http://java.sun.com/docs/bo

oks/tutorial/uiswing/start/swi
ngTour.html

8

Containers

• Notes:
– Container objects group components,

arranging them for display with a layout
manager.

9

Top-Level Containers

• JFrame example:
– contains a single component JRootPane, which

has a JMenuBar (optional) and a content pane
– theFrame.setJMenuBar(theMenuBar)
– theFrame.setContentPane(thePanel)

– add non-menu components to this content
pane
– theFrame.getContentPane().add(aButton)

10

Events

• Two approaches to event handling
– read-evaluation loop (client-written loop)
– notification-based (callbacks)

• Swing uses the 2nd approach

11

Events

• Swing:
– objects communicate by “firing” and

“handling” events (event objects)
– (conventional method call)

– events are sent from a single source object
to one or more registered listener objects

12

Events

• Swing:
– different event sources produce different

kinds of events

e.g., a JButton object, when clicked,
generates an ActionEvent object, which is
handled by an ActionListener (an object
whose class implements this interface)

3

13

Events

event source event listener

listener interface

1..*1..*

14

Events

• Handling:
– create a component

– e.g., a JButton
– add it to the GUI

– e.g., to a JPanel
– register a listener to be notified when the

component generates an event
– e.g., interface ActionListener

– define the callback method
– e.g., actionPerformed()

15

Event Handling

• class MyListener implements ActionListener {
…
public void actionPerformed(ActionEvent event) {

// react to event
…

}
}

• …
// instantiate event listener
ActionListener listener = new MyListener();
…
// instantiate event source
JButton button = new JButton(“Hello”);
…
// register event listener with event source
button.addActionListener(listener);

16

UML Sequence Diagram

:MyPanel

:JButton

:MyListener

new

addActionListener ()

…

new

actionPerformed ()

17

Event Handling

• Options for implementing listeners:
– listener class
– anonymous inner classes
– named inner classes

18

Event Handling

• Listener class:

4

19

Event Handling

• Anonymous inner listener class:

20

Event Handling

• Named inner listener class:

21

Event Handling

• Note:
– A class could potentially be both an event

source and event listener.

– Good or bad idea? …

22

Event Handling

• public class MyButton extends JButton implements
ActionListener {

…
public MyButton() {

…
addActionListener(this);

}
…
public void actionPerformed(ActionEvent event) {

…
}

}

• JButton button = new MyButton() …

23

Dependencies

24

Dependencies

• Problems:
– need to maintain consistency in the views (or

observers)
– need to update multiple views of the common

data model (or subject)

– need clear, separate responsibilities for
presentation (look), interaction (feel),
computation, persistence

5

25

Model/View/Controller

• MVC roles:
– model

– complete, self-contained representation of
object managed by the application
e.g., spreadsheet document

– provides a number of services to manipulate
the data
e.g., recalculate, save

– computation and persistence issues

– …

26

Model/View/Controller

• MVC roles:
– view

– tracks what is needed for a particular perspective
of the data
e.g., bar chart view

– presentation issues
– controller

– gets input from the user, and uses appropriate
information from the view to modify the model
e.g., get slider value, trigger chart modify

– interaction issues

27

Model/View/Controller

28

Model/View/Controller

• Separation:
– you can modify or create views without

affecting the underlying model

– the model should not need to know about
all the kinds of views and interaction styles
available for it

– separate threads?

29

Model/View/Controller

• In Swing:
– in practice, views and controllers are

implemented with Swing components and
listeners

– both views and controllers will be
dependent on Swing APIs

30

Model/View/Controller

• In Swing:
– still, try to separate the model and its

services so that it is Swing-free

– model is like a “virtual machine” or “kernel”
specific to the application

6

31

Model/View/Controller

• Smalltalk:
– originated the MVC concept

– integral support in interactive applications
with MVC classes

32

Model/View/Controller

• Java and Swing:
– concept is still valid to help structure

interactive applications
e.g., use a framework that supports MVC

– Swing internally uses a variant of MVC for
its pluggable look-and-feel capability …

33

Pluggable Look-and-Feel

• Swing:
– the look-and-feel is implemented in Java, but

could mimic Windows, Motif, Classic, Aqua,
etc.

– UIManager.setLookAndFeel(
“com.sun.java.swing.plaf.windows.WindowsLookAndFeel”
);

– UIManager.setLookAndFeel(
“javax.swing.plaf.metal.MetalLookAndFeel”
);

34

Pluggable Look-and-Feel

• SwingSet:
– http://java.sun.com/products/javawebstart/demos.html

35

Pluggable Look-and-Feel

• Idea:
– similar to skins, themes, schemes, etc., but

must include “feel” as well as “look”

36

Pluggable Look-and-Feel

• Swing internals:
– each component uses a user interface

delegate object (responsible for view and
controller roles)

model
object

user interface
object

component

user interface
manager

7

37

Pluggable Look-and-Feel

• Swing internals:
– each component specifies a model

interface that an associated model class
must implement

38

Model/View/Controller

• CRC cards for MVC:
– discuss what models, views, and

controllers there are in the system

– be a design critic

